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Abstract— Plane spiral orbital angular momentum (PSOAM)
mode-groups (MGs) and multiple-input multiple-output non-
orthogonal multiple access (MIMO-NOMA) serve as two emerg-
ing techniques for achieving high spectral efficiency (SE) in
the next-generation networks. In this paper, a PSOAM MGs
based multi-user MIMO-NOMA system is studied, where the
base station transmits data to users by utilizing the generated
PSOAM beams. For such scenario, the interference between
users in different PSOAM mode groups can be avoided, which
leads to a significant performance enhancement. We aim to
maximize the energy efficiency (EE) of the system subject to the
constraints of the total transmission power and the minimum
data rate. This designed optimization problem is non-convex
owing to the interference among users, and hence is quite difficult
to tackle directly. To solve this issue, we develop a dual layer
resource allocation algorithm where the bisection method is
exploited in the outer layer to obtain the optimal EE and a
resource distributed iterative algorithm is exploited in the inner
layer to optimize the transmit power. Besides, an alternative
resource allocation algorithm with Deep Belief Networks (DBN)
is proposed to cope with the requirement for low computational
complexity. Simulation results verify the theoretical findings
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and demonstrate the proposed algorithms on the PSOAM MGs
based MIMO-NOMA system can obtain a better performance
comparing to the conventional MIMO-NOMA system in terms
of EE.

Index Terms— Energy efficiency (EE), plane spiral orbital
angular momentum (PSOAM), non-orthogonal multiple access
(NOMA), mode group, resource allocation.

I. INTRODUCTION

THE rapid development of Internet-of-Things (IoTs) appli-
cations has caused the exponential growth of wireless

devices. Consequently, the sixth generation (6G) wireless
networks face particular challenges to meet the further require-
ments in terms of reliable data connectivity and ultra-high
data-rate. In addition, the data rates of devices are severely lim-
ited by the insufficient spectrum resources. These trends make
spectral efficiency (SE) the main performance indicator of
mobile communication networks. On the other hand, massive
number of connected devices also leads to enormous energy
consumption, and thus energy efficiency (EE) has become
an important and global topic from both environmental and
economic reasons [1].

Recently, the orbital angular momentum (OAM) technique
is regarded as one of the key techniques in the next-generation
networks [2]. Apart from the traditional multiplexing schemes,
mode division multiplexing using OAM exploits a new degree
of freedom for improving the SE owing to its orthogonality,
thus it is capable of meeting the requirements of high data rate
with a reliable bit error rate (BER) [3]. OAM was discovered
by Allen et al. from Laguerre-Gaussian (LG) light waves in
1992. As the wireless communication develops rapidly, the
OAM technology was first implemented in the electromag-
netic (EM) waves, which could solve the radio-band conges-
tion problem by encoding the information in an OAM state [4].
To further explore the unique properties of OAM waves
under the multipath transmission conditions, the authors in [5]
proposed a hybrid orthogonal division multiplexing (HODM)
scheme, which could achieve high system throughput and mit-
igate the multipath interference when used in conjunction with
orthogonal frequency division multiplexing. In [6], by apply-
ing the multiple input multiple output (MIMO) technique,
a point-to-point OAM-MIMO system is proposed to address
the problem of signal-to-noise ratio (SNR) degradation and
the limitation of high OAM modes. It has been proven that
this system can achieve over 200 Gbit/s data transmission
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with 21 streams at a distance of 10 meters. By considering
the co-mode interference, the authors in [7] developed the
concentric uniform circular arrays (UCAs) based radio vortex
wireless communication model to increase the system capacity
by using the optimal resource allocation schemes. To further
improve the performance of the OAM-based communica-
tion systems in long-distance transmission, an OAM index
modulation transmission scheme for long distance had been
established in [8], where different OAM modes were mapped
to the index domain. In addition, the authors in [9] proposed
an OAM spatial modulation (OAM-SM) system and analysed
the capacity, EE, average bit error probability and the robust to
path-loss attenuations, which outperformed the OAM-MIMO
system at long distance transmission.

However, the main practical challenge for applying such
technology into the electromagnetic (EM) filed is the beam
divergence and phase singularity caused by the OAM modes
and long-distance transmission. With the increase of OAM
modes number and the transmission distance, the dark zone
in the center of the OAM wave becomes larger. Consequently,
the receiver size will become extremely large using the con-
ventional whole circle receiving scheme, which leads to large
receiver form factor and high hardware complexity. To solve
the problem, the authors in [10] proposed the partial arc
sampling receiving (PASR), which could improve the SE with
a low computational complexity and compact size. More-
over, S. Zheng et al. proposed a new form of OAM waves
called plane spiral orbital angular momentum (PSOAM),
which propagated along the transverse plane intelligently,
and thereby avoiding the aforementioned issues of phase
singularity and the diversity [11]. Subsequently, the authors
proposed a PSOAM waves-based MIMO system to enhance
the capacity gain and reduce the spatial correlations for the
LOS channel by utilizing the diversity of different OAM
waves [12]. Meanwhile, the authors in [13] had studied and
proven that the PSOAM based MIMO system achieved better
system performance in the NLOS channel than in the LOS
channel. In addition, the authors further analysed the PSOAM
beams and put forward the concept of PSOAM mode-groups
(MGs), which had the promising prospect in SM-MIMO, radar
detection and smart antenna. More importantly, the PSOAM
MGs wave is a structural radio beam, which can manipulate
its phase distribution and intensity, and thus is a feasible
way for the PSOAM MGs beamforming method thanks to its
directional gain and vorticity [14]. They also proved that the
beamforming based PSOAM MGs was superior to the MIMO
beamforming method due to its simplicity. In contrast with the
scheme of OAM shift keying, PSOAM MGs can be applied
in physical encryption, and thus the authors in [15] proposed
a low probability of intercept system by mapping symbols to
different PSOAM MGs beams, which achieved secure com-
munication within the practical SNR ranges. To demonstrate
the performance of PSOAM MGs, the authors in [16] applied
PSOAM MGs based MIMO techniques into a single-user
system, where the PASR method was adopted to demultiplex
the PSOAM MGs data streams. Since the PSOAM MGs can
enhance the SNR and decrease the spatial correction of sub-
channels, the BER and SE performance of the proposed system

outperforms the existing MIMO systems. Moreover, a partial
arc transmitting scheme is developed in [17] to generate an
OAM MG with high equivalent OAM order. This work was
extended to realize a high-purity eight-mode PSOAM antenna
using a rotating parabolic reflector and a coaxial resonator
group [18]. The authors in [19] have further studied the
peculiarity of PSOAM MGs and demonstrated the intensity
patterns and the phase variation, which offered a potential
application prospect for beamforming and radar imaging.

On the other hand, non-orthogonal multiple access (NOMA)
is regarded as a key technique to enhance the SE in the
fifth generation (5G) and beyond 5G (B5G) mobile networks
[20]–[22]. It can simultaneously serve a large amount of users
with the same physical resource via superposition coding (SC),
where different users can be distinguished with different power
levels and successive interference cancellation (SIC) is used to
cancel the interferences among multiple users [23]. In particu-
lar, NOMA has been widely used in MISO and MIMO systems
since it can obtain superior performance in terms of EE and
SE in comparison with the orthogonal multiple access (OMA)
system [24]–[26]. In [24], an EE maximization problem was
investigated in a NOMA network, where the resource alloca-
tion and the time switching factors were jointly considered and
a dual-layer algorithm using Dinkelbach method was proposed
to tackle the non-convex problem. In [25], a power mini-
mization problem was studied in a multi-user MIMO-NOMA
network, where the beamforming vectors and power allocation
were optimized, and a closed-form solution for beamforming
vectors were obtained. Moreover, to overcome the limitation of
beamspace MIMO, the authors in [26] proposed a beamspace
MIMO-NOMA system that the supported users number was
larger than the RF chains number. Simulation results demon-
strated that it achieved better EE performance compared with
the existing beamspace MIMO systems. In [27], by integrating
different OAM modes and NOMA techniques, an efficient
downlink NOMA-OAM-MIMO scenario was presented to
further enhance the system capacity.

A. Motivation and Contributions
NOMA can simultaneously serve a large amount of users

with the same physical resource via superposition coding, and
thus can significantly improve the system performance. Due to
the increasing demand of high data-rate communication, uti-
lizing only NOMA technique does not meet the ever-growing
needs of spectrum resources in the next-generation wire-
less communication systems. PSOAM mode-groups technique
takes a different approach to improve the spectral efficiency by
introducing the orthogonality in azimuthal domain. Compared
with the conventional OAM technique, PSOAM can avoid the
issues of phase singularity, and thus the coaxial propagation for
different OAM modes can be achieved easily [11]. Therefore,
the two emerging techniques can reinforce each other for
achieving high spectral efficiency. Motivated by this, this work
integrates PSOAM technique into MIMO-NOMA to further
enhance the system performance. Specifically, in contrast to
previous literature which analysed SE or EE in single-user
OAM systems [9], single-user PSOAM MGs systems [16]
and multi-user OAM-MIMO-NOMA systems [27], in this
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paper, we investigate the EE optimization problem for the
PSOAM MGs based multi-user MIMO-NOMA system, where
the transmit power is optimized through the proposed dual
layer resource allocation. To the best of our knowledge, this is
the first work that explore the EE performance of the PSOAM
MGs based multi-user MIMO-NOMA networks. Our main
contributions can be summarized as follows:
• We design a novel resource allocation framework for the

downlink PSOAM MGs based MIMO-NOMA system,
where a base station (BS) transmits data to multiple users
simultaneously through the generated PSOAM beams.
The goal of this work is to investigate the EE maximiza-
tion problem of the proposed framework while satisfying
the transmit power and minimum user rate constraints.
As a result, two schemes are developed in this paper to
cope with this optimization problem.

• Firstly, we present a dual layer resource allocation algo-
rithm to solve this problem. The resultant optimiza-
tion problem is non-convex and NP-hard involving the
optimization of the transmit power, which cannot be
solved directly. By applying the generalized fractional
programming technique, we transform the original EE
maximization into a parametric programming problem,
which is still difficult to solve directly. Then, we adopt
the first order Taylor approximation to transform the
problem into a convex problem, and present a dual layer
resource allocation algorithm to solve this problem. The
outer layer exploits a bisection method to optimize the
EE. In each iteration, the inner layer uses a resource
distributed iterative algorithm to optimize the transmit
power with a fixed EE.

• The complexity of the proposed dual-layer iterative
resource allocation algorithm grows considerably as the
number of users increases, thus it is hard to cope with the
requirement for low computational complexity. To over-
come this challenge, we propose a resource allocation
scheme with Deep Belief Networks (DBN) to achieve the
goal of EE maximization. The learning process includes
training-data generation, model optimization, and model
testing.

• Simulation results validate that the proposed dual layer
resource allocation algorithm and the proposed resource
allocation algorithm with DBN are capable of achieving
the optimal EE of our proposed framework. In addition,
numerical results also demonstrate that the proposed
PSOAM MGs based multi-user MIMO-NOMA system
can achieve superior EE performance in comparison with
the conventional multi-user MIMO-NOMA systems.

B. Organization and Notation

The remainder of the paper is organized as follows. The
proposed PSOAM MGs based MIMO-NOMA system model
and the problem formulation of optimizing EE are described
in Section II. In Section III, we propose a dual-layer resource
allocation algorithm to solve the non-convex EE optimization
problem. In Section IV, another alternative scheme with the
help of deep learning is investigated to acquire the solution

that maximizes the EE of the proposed system. In Section V,
simulation results are presented to validate the effectiveness
of the theoretical findings. Finally, we draw the conclusions
for this paper in Section VI.

The notations used throughout the full paper are illustrated
as follows. Bold case letters represent the vector and non-bold
case letters represent the scalar. E[|a|2] denotes the power of a.
The gradient of f(m) at the point m0 is denoted by ∇f(m0).
hT denotes the transpose of the vector h, and ‖a‖2 denotes
the l2-norm of a. We use [s]+ to represent max(s, 0).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a downlink PSOAM MGs
based MIMO-NOMA system, which includes one BS with Nt
antennas. We consider K (K=4) randomly distributed users
in a fan-shaped area. The considered system is composed
of uniform linear arrays (ULAs) and the antenna spacing
is ζ. At the transmitting side, each antenna only sends data
streams to a corresponding user, in which two superposed
PSOAM MGs waves are radiated into the free space using the
structure of the circular travelling-wave antenna with a ring
horn [28]. The total number of PSOAM modes superposed in
one PSOAM mode group is marked as G, which is sorted in
the ascending order as {l0, l0 + �l, l0 + 2�l, . . . , l0 + (G −
1)�l}, and the mode interval is marked as �l. As stated
in [16], the equivalent PSOAM MGs phase slope can be
calculated by the first and the last modes in a MG, and we
assume that the signals of the nth transmitting antenna is
sent to the nth user. At the receiver, each user is equipped
with Nr = 2 receiving antennas, which are placed within
the main lobe of the superposed PSOAM MGs waves. Due
to the orthogonality of different PSOAM mode groups in the
main lobe zone [19], there is no interference between each
different PSOAM mode group. However, since all users share
the same bandwidth, the interferences among the users can not
be ignored when decoding the signals for the same PSOAM
mode group. The total transmit power is restricted to Pmax
and the signal transmitted to user k in the mgth mode group
is written as

Xk,mg =
√
pk,mg · xk,mg , (1)

where pk,mg denotes the power allocation of the mgth

PSOAM mode group at the kth user and xk,mg is the trans-
mit data symbol for the mgth mode group of user k, i.e.,
E[|xk,mg |2] = 1.

Let ϕk0 be the initial azimuthal angle of the PSOAM MG
pattern of user k for the mgth mode group, the link of channel
gain hk,nr ,nt,mg between the ntht transmitting antenna and the
nthr receiving antenna is formulated as

hk,nr,nt,mg = Γ1
1√
Gmg

Gmg∑
gmg=1

e−j(l
mg
0 +gmg�l)ϕk,nr,nt

= Γ1
1√
Gmg

e−jl
mg
eq ϕk,nr,nt , (2)

where Γ1 = βk,nt

λ
4πdk,nr,nt

e−j
2π
λ dk,nr,nt , lmg0 and lmgeq repre-

sent the first mode among mode group mg and the equivalent
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Fig. 1. Illustration of a PSOAM MGs based MIMO-NOMA system model.

Fig. 2. The structure of the PSOAM MGs based MIMO-NOMA system.

OAM order of mode group mg, respectively, dk,nr ,nt repre-
sents the distance between the ntht transmitting antenna and
the nthr receiving antenna of user k, λ is the wave length, and
βk,nt =

√
GtGr is a constant that related to the antenna gain

of the ntht transmitting antenna and the nthr receiving antenna.
Specifically, the interference of the ntht transmitting antenna
to the other K−1 non-intended users can be calculated by the
antenna gain according to the amplitude and phase distribution
of the PSOAM MGs wave [19]. Gt can be determined by the
distribution of the users and the interference of the minor lobe.
In addition, ϕk,nr ,nt represents the azimuthal angle between
the ntht transmitting antenna and the nthr receiving antenna of
user k, which is described in Fig. 2. To calculate the phase
ϕk,nr ,nt , there are two conditions that should be considered.
One is when the initial azimuthal angle of the PSOAM MG
pattern ϕk0 > 0 and the other is when ϕk0 < 0. For ϕk0 > 0,
it can be observed in Fig. 2 that it can be further divided into
three cases, which are discussed as follows:

1) Case 1 k = nt: We define the vertical distance between
the center of the two receiving antennas of user k and
the corresponding transmitting antenna as dk. The radius
of the receiving aperture is marked as R. The distance between
the nthr receiving antenna and the ntht transmitting antenna can
be calculated by

dk,nr ,nt,k=nt =
√
d2
k +R2, (3)

where R = dk tan
(

π
2|lmg1

eq −lmg2
eq |

)
and dk is the relative

distance [16]. The phase ϕk between dk and dk,nr ,nt,k=nt

is given by

ϕk = (−1)nr · arctan(
R

dk
). (4)

Hence, the phase ϕk,nr ,nt,k=nt is calculated by

ϕk,nr ,nt,k=nt = ϕk + ϕk0 . (5)

2) Case 2 k < nt: According to the cosine theorem, we can
calculate the distance between the nthr receiving antenna of
the non-intended user k and the ntht transmitting antenna as
follows in (6), as shown at the bottom of the next page.
In addition, the azimuthal between the nthr receiving antenna
and the ntht transmitting antenna of user k is defined as

ϕk,nr ,nt

=
π

2
− ω, (7)

ω = arccos

(
((nt − k) · ζ)2 + d2

k,nr ,nt
− d2

k,nr ,nt,k=nt

2 · dk,nr ,nt · (|nt − k| · ζ)

)
.

(8)

3) Case 3 k > nt: Similarly, the distance between the nthr
receiving antenna of user k and the ntht transmitting antenna
is formulated as follows in (9), as shown at the bottom of
the next page. The azimuthal angle of the kth user from nthr
antenna to the ntht transmitting antenna is

ϕk,nr ,nt = ω − π

2
, (10)

where ω can be calculated by (8).
For the condition ϕk0 < 0, the related angle and distance

can be calculated using the same approach as the condition
ϕk0 > 0. Due to dk,nr ,nt � R and dk,nr ,nt � ζ, we can make
an approximation that dk,nr ,nt ≈ dk. Hence, the channel gain
is expressed as

hk,nr ,nt,mg = βk,nt

λ

4πdk
e−j

2π
λ dk

1√
Gmg

e−jl
mg
eq ϕk,nr,nt . (11)

Inspired by the PASR method, we use 1/2 circular arc to
receive the PSOAM MGs waves, where Nr receiving antennas
are evenly distributed at the π angular arc. Each antenna only
sends data streams to a corresponding user at the transmitting
side for the case of PSOAM MGs-based NOMA. In particular,

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 22,2023 at 02:10:17 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: EE OPTIMIZATION FOR PSOAM MODE-GROUPS BASED MIMO-NOMA SYSTEMS 5683

the channel from the lth transmitting antenna to the kth user
in mode group mg can be denoted as hk,l,mg . We assume the
channel state information is known and SIC will be adopted to
cancel the interferences among multiple users in the NOMA
system. Particularly, within the same mode group, user k can
detect the signal of user l (l < k) and remove the signal from
its observation, while the signal to user l (l > k) is treated as
the interference at user k. As a result, the total rate of all K
users can be formulated as

Rtotal =
K−1∑
k=1

MGs∑
mg=1

Blog2

⎛
⎜⎜⎜⎝1 +

pk,mgλ
2
k,k,mg

K∑
l=k+1

pl,mgλ2
k,l,mg + σ2

⎞
⎟⎟⎟⎠

+
MGs∑
mg=1

Blog2

(
1 +

pK,mgλ
2
K,K,mg

σ2

)
, (12)

where λk,l,mg is the singular values of the channel matrix that
satisfies the condition: λ1,1,mg ≤ λ2,2,mg ≤ . . . ≤ λK,K,mg .

B. Power Consumption Model

In general, the power consumption of the PSOAM MGs
based MIMO-NOMA system consists of transmit power and
circuit power, which is defined as follows

PCtotal = α

K∑
k=1

MGs∑
mg=1

pk,mg + Pc, (13)

where α is the power amplifier drain efficiency and Pc =∑Nt

nt=1 P
(nt)
Tx

+
∑K

k=1

∑Nr

nr=1 P
(k,nr)
Rx

is the circuit power
consumption of system hardware. The circuit power consumed
on the RF chain attached to the ntht transmit antenna and the
RF chain attached to the nthr receiving antenna at the kth user
is denoted as P (nt)

Tx
and P

(k,nr)
Rx

, which account for mixer,
filter, intermediate frequency amplifier and so on [29]–[31].

C. Problem Formulation

The resultant EE of the PSOAM MGs based MIMO-NOMA
system can be given by

γEE � Rtotal
PCtotal

=

K∑
k=1

MGs∑
mg=1

Blog2

⎛
⎝1 + pk,mgλ

2
k,k,mg

K�

l=k+1
pl,mgλ2

k,l,mg+σ2

⎞
⎠

α
K∑
k=1

MGs∑
mg=1

pk,mg + Pc

. (14)

The purpose of this work is to maximize the EE of the
PSOAM MGs based MIMO-NOMA system with the minimum
user rate and the transmit power constraints. Therefore, the
EE optimization problem is expressed in (15)-(18), as shown
at the bottom of the next page, where K = {1, 2, . . . ,K}
represents the set of users, MG = {mg1,mg2, . . . ,MGs}
denotes the set of all PSOAM mode groups. C1 guarantees
the minimum user rate constraint. C2 ensures that the total
transmit power is limited to Pmax. In C3, pk,mg should be a
positive integer and mg ∈ MG for any k ∈ K is requested.
The considered EE maximization problem is non-convex and
thus the solution cannot be obtained directly. In order to solve
this problem, we propose an effective dual layer resource
allocation algorithm that can optimize γEE in the outer-layer
and then turn to deal with P in the inner-layer with a fixed
γEE iteratively.

III. PROPOSED DUAL-LAYER ITERATIVE RESOURCE

ALLOCATION ALGORITHM

In this section, we consider the resource allocation algo-
rithm for the proposed system. The optimization problem
in (15)-(18) belongs to a non-convex and non-linear fractional
programming problem and thus very difficult to acquire the
solution directly. As a result, we develop a dual-layer iterative
method where the optimal power allocation P is optimized in
the inner-layer and the optimal EE is obtained in the outer-
layer. To tackle this problem, we transform the fractional
objective function into a subtractive form of numerator and
denominator according to the following proposition.

Proposition 1: For Rk,mg(P ) > 0 and PCtotal(P ) > 0,
the optimal solution P ∗ of (15) is achieved when the following
equation is consistent:

max
P∈{C1,C2,C3}

[Rtotal(P ) − γ∗EEPCtotal(P )]

= [Rtotal(P ∗) − γ∗EEPCtotal(P
∗)] = 0, (19)

γ∗EE = max
P∈{C1,C2,C3}

Rtotal(P )
PCtotal(P )

=
Rtotal(P ∗)
PCtotal(P ∗)

, (20)

where γ∗EE can be the optimal EE and P ∗ can be the optimal
resource allocation of the optimization problem.

Proof: See Appendix A.
Proposition 1 gives the condition for developing the optimal

resource allocation method from the perspective of necessary
and sufficient. We define Υ(γEE) as follows

Υ(γEE) = max
P

[Rtotal(P ) − γEEPCtotal(P )] , (21)

where Υ(γEE) is a function with independent variable γEE .
To solve the equivalent problem in (19), we first obtain the
γ∗EE . Then, we have the following proposition.

dk,nr ,nt =
√

((nt − k) · ζ)2 + d2
k,nr ,nt,k=nt

− 2dk,nr ,nt,k=nt · ζ · (nt − k) · cos(
π

2
+ ϕk,nr ,nt,k=nt). (6)

dk,nr ,nt =
√

((nt − k) · ζ)2 + d2
k,nr ,nt,k=nt

− 2dk,nr ,nt,k=nt · ζ · (k − nt) · cos(
π

2
− ϕk,nr ,nt,k=nt). (9)
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Proposition 2: Problem (21) is monotonically decreasing
with respect to γEE .

Proof: See Appendix B.
By applying proposition 2, the bisection method can be used

to find γ∗EE . We can adjust the upper bound of γEE when
Υ(γEE) > 0, whilst the lower bound when Υ(γEE) < 0 until
the optimal EE is found.

For a given γiEE at the ith iteration, the optimization
problem is now transformed as

max
P

Rtotal(P ) − γiEEPCtotal(P )

s.t. C1, C2, C3. (22)

To solve problem (22), we define the function Υ(γiEE) as
follows

Υ(γiEE) = max
P

Rtotal(P ) − γiEEPCtotal(P ). (23)

Since different PSOAM MGs are orthogonal to each other,
Υ(γiEE) can be further simplified. Hence, we can split Rtotal
into MGs parts according to different PSOAM mode groups,
and the total transmit power can be split for the same reason.
Therefore, (23) can be transformed by

Rtotal(P ) − γiEEPCtotal(P )
= F (P ) −H(P ), (24)

F (P ) = fmg1(Pmg1) + · · · + fmgMGs(PmgMGs), (25)

H(P ) = hmg1(Pmg1) + · · · + hmgMGs(PmgMGs). (26)

For each PSOAM MG, by using a logarithmic transforma-
tion, we can obtain the expression of the function fmg(Pmg)
and hmg(Pmg) as follows

fmg(Pmg) =
K∑
k=1

Blog2(
K∑
l=k

pl,mgλ
2
k,l,mg + σ2)

− γiEE(α
K∑
l=k

pk,mg +
Pc
MGs

), (27)

hmg(Pmg) =
K∑
k=1

Blog2(
K∑

l=k+1

pl,mgλ
2
k,l,mg + σ2), (28)

where pl,mg is an element in the vector P that is expressed
as

pl,mg = P (1, (mg − 1) ·K + l). (29)

Besides, the non-convex constraint C1 in problem (22) is
mathematically transformed into an equivalent convex linear
form, which is formulated by

C1′ : (1 − 2
Rreq

B )

(
K∑

l=k+1

pl,mgλ
2
k,l,mg + σ2

)

+ pk,mgλ
2
k,k,mg ≥ 0, ∀k, ∀mg. (30)

Now, the optimization problem (22) is equivalent to

max
P

F (P ) −H(P )

s.t. C1′, C2, C3. (31)

Proposition 3: Although the constraints of the optimization
problem (31) are convex sets, (15), (22) and (31) remain to
be NP-hard problems.

Proof: See [32] for the proof of Proposition 3.
From (24), the optimization problem can be regarded as

the sum of the expression pairs of PSOAM MGs. We define
the expression pairs as f minus h and each expression pair is
regarded as two concave functions. Therefore, the correspond-
ing resource allocation problem is still non-convex, which is
hard to solve directly. Fortunately, we can approximate the
function h to an affine function by applying the first order
Taylor approximation to formulate the function. Hence, the
corresponding objective function can be written as a concave
function minus an affine function, and we can transform the
problem into a convex optimization problem.

To solve this issue, we can obtain P q
mg through an iterative

resource allocation algorithm at the qth iteration. In particular,
the first-order Taylor expansion at P q is formulated as

hmg(P q
mg) + ∇hTmg(P q

mg)(Pmg − P q
mg)

T , (32)

where ∇hmg(Pmg) represents the gradient of hmg(Pmg),
Pmg = P ((mg−1)K+1,mg ·k) and the second part in (32)

max
pk,mg

K∑
k=1

MGs∑
mg=1

Blog2

⎛
⎝1 + pk,mg ·λ2

k,k,mg

K�

l=k+1
pl,mgλ2

k,l,mg
+σ2

⎞
⎠

α
K∑
k=1

MGs∑
mg=1

pk,mg + Pc

(15)

s.t. C1 : B log2

⎛
⎜⎜⎜⎝1 +

pk,mg · λ2
k,k,mg

K∑
l=k+1

pl,mgλ2
k,l,mg + σ2

⎞
⎟⎟⎟⎠ ≥ Rreq, ∀k ∈ K, ∀mg ∈ MG, (16)

C2 :
K∑
k=1

MGs∑
mg=1

pk,mg ≤ Pmax, (17)

C3 : pk,mg ≥ 0, ∀k ∈ K, ∀mg ∈ MG, (18)
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is written as

∇hTmg(Pmg)(Pmg − P q
mg)

T

=
K∑

k=1

B
K∑

l=k+1

pl,mgλ2
k ,l,mg + σ2

emg × (P mg − P q
mg)

T ,

(33)

where emg is a 1 × K matrix. If k + 1 < j < K , we have

emg(j) = λ2
k,l,mg/ln2. In other cases, we have emg(j) = 0.

Combining (32) with (33), the optimization problem (31)
can be further transformed as follows in (34), as shown at the
bottom of the next page. Fortunately, (34) is a standard convex
optimization problem, which is tackled using the Lagrange
duality algorithm. To solve the problem, we define μ, ν and ψ
as the Lagrangian multipliers of C1′,C2 and C3 respectively,
and the Lagrangian function of the optimization problem is
given as follows in (35), as shown at the bottom of the next
page. Hence, the dual optimization problem is denoted as

g(μ,ν, ψ) = max
P

L (P ,μ,ν, ψ) , (36)

and the dual optimization problem is given by

min
μ,ν,ψ

g(μ,ν, ψ)

s.t. μ ≥ 0, ν ≥ 0 and ψ ≥ 0. (37)

We propose an iterative algorithm based on gradient descent
algorithm first to achieve the optimal P for the dual optimiza-
tion problem (37). In particular, pk,mg is updated successively
according to the gradient of the Lagrangian function (35) in
terms of pk,mg, which is expressed as

∇pk,mg
L :=

B

ln 2

k∑
n=1

λ2
n,k,mg

K∑
l=n

pl,mgλ2
n,l,mg + σ2

− B

ln 2

K∑
k=1

(emg)k
K∑

l=k+1

pql,mgλ
2
(k+1),l,mg + σ2

+
k−1∑
m=1

μm,mg

(
1 − 2

Rreq
B

)
(λm,k,mg)2

+μk,mg (λk,k,mg)
2 + νk,mg − ψ, (38)

p
(s2)
k,mg =

[
p
(s2−1)
k,mg + t∇(s2−1)

pk,mg
L
]+
, (39)

where (emg)k represents the kth element of emg , t represents
the iteration step size of pk,mg , while p

(s2)
k,mg and p

(s2−1)
k,mg

indicate the power allocation of the sth2 and (s2−1)th iteration.
We then address the optimization problem (37) to obtain

the optimal Lagrangian multipliers. It is worth noting that the
objective function and the constraints are linear with reference
to Lagrangian multipliers. Hence, the dual problem is convex
over the dual variables μ, ν, ψ, which is optimized according
to the one dimensional searching algorithm. However, the
gradient algorithm is not necessarily feasible since the dual
function (36) is not guaranteed to be differentiable. Hence,

we update μ, ν, ψ through the sub-gradient algorithm, which
is presented in Lemma as follows.

Lemma: The sub-gradient of the Lagrange multipliers in
g(μ,ν, ψ) is denoted as

∇μk,mg
g := (1 − 2

Rreq
B )

(
K∑

l=k+1

pl,mgλ
2
k,l,mg + σ2

)

+ pk,mgλ
2
k,k,mg , ∀k ∈ K, ∀mg ∈ MG, (40)

∇νk,mg
g := pk,mg, ∀k ∈ K, ∀mg ∈ MG, (41)

∇ψg := Pmax −
∑MGs

mg=1

∑K

k=1
pk,mg. (42)

Proof: See the Lemma 1 in [33] for detailed proof.
Therefore, with the sub-gradient of the Lagrange multipli-

ers, we can update μ, ν and ψ as follows

μ
(s1)
k,mg =

[
μ

(s1−1)
k,mg +
(s1−1)∇μk,mg

g
]+
,

∀k ∈ K, ∀mg ∈ MG, (43)

ν
(s1)
k,mg =

[
ν

(s1−1)
k,mg +
(s1−1)∇νk,mg

g
]+
,

∀k ∈ K, ∀mg ∈ MG, (44)

ψ
(s1)
k,mg =

[
ψ

(s1−1)
k,mg +
(s1−1)∇ψk,mg

g
]+
, (45)

where 
 represents the iteration step size of Lagrange
multipliers.

Now we can conclude the approach to deal with the opti-
mization problem in (15)-(18) under a given γEE . The detail
information of the proposed dual-layer resource allocation
algorithm is presented in TABLE I.

We denote the computational complexity of the proposed
algorithm by O(N1N2N3), which consists of three parts: the
outer layer part N1, the inner layer part N2 and the SIC part
N3 [24]. The number of iterations of the outer layer is bounded
by N1 = Lmax, where Lmax is the maximum iteration num-
ber [32]. The complexity of the inner layer is approximated
as N2 = O(�Imax − I0 − ε

�I 
 · K · MGs · log 1
ε ), where

Imax =maxP[F (P)−H(P)], �I = min q[Iq−Iq−1] [34]. The
interference of each terminal is successfully cancelled in SIC
process and thus the computational complexity depends on
the number of users is approximately of order O(K2.376) [35].
In general, the total complexity of the proposed resource allo-
cation iterative algorithm is approximately O(Lmax · �Imax−
I0 − ε

�I 
 ·K ·MGs · log 1
ε ·K2.376).

IV. PROPOSED RESOURCE ALLOCATION

ALGORITHM WITH DBN

As the number of users increases, the complexity of the
proposed dual-layer iterative resource allocation algorithm
grows considerably, which is hard to cope with the requirement
for low latency applications [36]. Deep learning is capable
of learning complex algorithms from only observed data and
has achieved remarkable success in communication systems.
To overcome this challenge, we investigate a resource allo-
cation algorithm with deep learning framework to acquire
the solution that maximizes the EE of the proposed system.
Specifically, we adopt a deep belief network (DBN) as the
backbone network since its robustness and flexibility in solving

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 22,2023 at 02:10:17 UTC from IEEE Xplore.  Restrictions apply. 



5686 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 8, AUGUST 2022

the resource allocation optimization problem. Before applying
the DBN to the optimization problem of this paper, we briefly
review its advantages and the specific implementation details.
Then, the involved training data generation, model optimiza-
tion, and model prediction are presented as follows.

A. Preliminaries

A DBN consists of multiple Restricted Boltzmann Machines
(RBMs), which include an input layer and a hidden layer.
Input data is added to the input layer of the DBN and
then passed to the hidden layer, where this information is
processed by multiple neurons. The optimization process of
the DBN includes pre-training and fine-tuning. Firstly, the
DBN is pre-trained layer by layer using the energy function
to obtain the initial parameters. Secondly, based on the back-
propagation algorithm, the DBN can be fine-tuned by super-
vision of training data.

B. Training Data Generation

The success of deep neural networks is inseparable from
the support of a large amount of training data. Hence, the
generation of training data is necessary. The vector of the ran-
domly generated channel gains serve as the input X of the
DBN. Besides, the output vector Y of the DBN is provided
by the corresponding optimal solution {p∗}, which is obtained
through the complete algorithm developed in Section III. The
BS with Nt antennas radiating MGs mode groups commu-
nicate with K users, the set of optimal solution {p∗} is
composed of MGs · K components. Hence, the number of
DBN is set to MGs · K in this paper. In particular, ŷl, the
resource allocated to user k under the mgth mode group,
is predicted by DBNl.

C. Model Optimization
1) Pre-Training: Following the practice of deep learning,

network optimization can benefit from better initialization in
pre-training. Let v and h represent the input and hidden layer
of the RBM in DBNl, respectively. The biases of v and h is

accordingly marked as bv and bh. The weight between v and
h is defined as w. Let Λ = {w,bv,bh}. The loss of pre-
training Lpre(v(t)) for set Λ can be formulated as follows:

Λ(t+1) = Λ(t) − χ
−∂ logLpre(v(t))

∂Λ(t)
, (46)

where t and χ are the number of iterations and the learning
rate, respectively. Lpre(v(t)) indicates the probability distrib-
ution of v(t) and can be normalized as the following function

Lpre(v(t)) =
∑
h(t)

Lpre(v(t),h(t))

=
∑
h(t)

exp(−E(v(t),h(t)))∑
v(t)

∑
h(t)

exp(−E(v(t),h(t)))
, (47)

where E(v(t),h(t)) is the energy function and is defined as

E(v(t),h(t)) = −v′
(t)w(t)h(t) − b′

v(t)v(t) − b′
h(t)h(t). (48)

2) Fine-Tuning: With the supervision of training data, the
parameter set Λ can be fine-turned iteratively by applying the
back-propagation algorithm, which can be formulated by

Λ(t′+1) = Λ(t′) − χ̃
∂Lf
∂Λ(t′)

, (49)

where χ̃ represents the learning rate and t′ is the number of
iteration in the fine-tuning stage. Particularly, the loss function
of fine-tuning stage Lf is adopted as the cross entropy function
to reduce the estimation error of DBNl. The fine-tuning
procedure can be calculated as

Lf = − 1
N

N∑
I=1

(
y
(i)
l log(ŷ(i)

l ) + (1 − y
(i)
l ) log(1 − ŷ

(i)
l )
)
,

(50)

where N is the number of training instances, y(i)
l is the output

of corresponding instance in the ith iteration and ŷ(i)
l represent

the corresponding prediction from DBNl.

max
P

MGs∑
mg=1

(
fmg(Pmg) − [hmg(P q

mg) + ∇hTmg(P q
mg)(Pmg − P q

mg)
T ]
)

s.t. C1′, C2, C3. (34)

L (P ,μ,ν, ψ) =
MGs∑
mg=1

(
fmg(Pmg) − [hmg(P q

mg) + ∇hTmg(P q
mg)(Pmg − P q

mg)
T ]
)

+
MGs∑
mg=1

K∑
k=1

μk,mg

(
(1 − 2

Rreq
B )

(
K∑

l=k+1

pl,mgλ
2
k,l,mg + σ2

)
+ pk,mgλ

2
k,k,mg

)

+
MGs∑
mg=1

K∑
k=1

νk,mg · pk,mg + ψ

(
Pmax −

MGs∑
mg=1

K∑
k=1

pk,mg

)
. (35)
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TABLE I

PROPOSED DUAL-LAYER ITERATIVE RESOURCE
ALLOCATION ALGORITHM

D. Model Prediction

The channel coefficients hk,l,mg are randomly generated
and the input layers of all DBNs are given by X =
[h1,1,mg1, · · · , h1,Nt,mg1, · · · , hK,1,mg1, · · · , hK,Nt,mg1, · · · ,

TABLE II

RESOURCE ALLOCATION ALGORITHM BASED ON DBN

hK,Nt,mgMGs ]T . With the well-trained model and the input
X , the estimation of the optimal output is calculated
directly from model’s prediction. Hence, the approximated
solution p∗ of the proposed framework can be obtained as
p∗ = [ŷ1,1, · · · , ŷK,1, · · · , ŷK,MGs]T . Details of the proposed
DBN-based resource allocation algorithm is summarized
in TABLE II.

V. SIMULATION RESULTS

In this section, simulation results are presented to evaluate
the performance of the bisection-based resource allocation
algorithm. To evaluate the EE performance, we employ a
channel with the carrier frequency operating at 10 GHz [37].
The power amplifier drain efficiency is set to α = 2, the

circuit power P (nt)
Tx

and P (k,nt)
Rx

is set to 100 mW. In particular,
we consider K = 4 users randomly distributed in a fan-shaped
area, which is 2 km away from the BS and all the results
are averaged over various random locations of terminals. The
proposed system is composed of uniform linear arrays with
4 antennas at the transmitter and the element spacing is
ζ = 7λ. The selected PSOAM MGs of each transmitting
antenna are mg1 = {−55,−54, . . . ,−46,−45} and mg2 =
{45, 46, . . . , 54, 55}. The radius of the receiving aperture R
is approximately 1.57 m when the relative distance is 100 m,
and hence the EE is calculated at a R of 1.57 m [16]. The
bandwidth of the system is normalized to 1 Hz. According
to the algorithm we proposed, the stopping criteria are set to
ε = � = 10−3. It is worth noting that the parameters in this
system are selected to prove the performance of EE as an
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Fig. 3. The convergence evolution of the proposed resource allocation
algorithm.

example and can be replaced by other reasonable parameters
according to the specific scenarios.

Our DBNs are implemented based on Pytorch. We prepare
1000 data samples {X,Y} to train the DBNs in each case
of various system parameters setting. The number of neurons
of each hidden layer in the DBN model is taken as 32,
64 and 32, respectively. The learning rate χ and χ̃ are taken as
1e−4. Besides, the training epoches is 2000. The terminating
threshould �3 = 1e−3 and �4 = 1e−3.

In the first simulation, the convergence behaviour of the
proposed bisection-based resource allocation algorithm is eval-
uated by demonstrating how the Ξ and Υ behave with the
number of iterations. We set Pmax = 2W, Rreq = 1bit/s/Hz.
As it can be seen in Fig. 3, the inner layer of the pro-
posed algorithm converges to zero, and the initiation point
P0 affects the convergence speed of the proposed algorithm.
Specifically, Ξ converges to zero after eight iteration when
P0 = 0.2Pmax, 0.4Pmax, 0.6Pmax, 0.8Pmax. Moreover,
as it can seen in Fig. 4, the outer layer of the proposed
algorithm can also converge to zero at approximately eight
iterations, which demonstrates that the convergence of our
proposed two-layer algorithm can converge to a stable value.
We also investigate the γiEE of the proposed EE algorithm
with different constraints of γmaxEE . We set P0 = 0.2Pmax,
Pmax = 2W, Rreq = 1bit/s/Hz. As shown in Fig. 5,
γiEE converges to a stable value after eight iteration with
γmaxEE = 3, 5, 10 bits/Joule/Hz, and the γmaxEE affects the
convergence speed of the proposed bisection method. These
results demonstrate the stability and validity of the proposed
algorithm.

In the next simulation, we study the EE performance of
the presented algorithm under different number of users with
various circuit power Pc. The number of users is ranged from
one to seven, and circuit power P (nt)

Tx
and P

(k,nr)
Rx

are set
to 100mW, 120mW and 140mW. As shown in Fig. 6, with
the increase of Pc, γ∗EE decreases accordingly as anticipated.
The reason is that γEE is inversely proportional to Ptotal, and
hence increasing circuit power leads to increasing the total

Fig. 4. The convergence evolution of the proposed bisection-based EE
optimization algorithm.

Fig. 5. An example of convergence evolution of the proposed bisection-based
EE optimization algorithm in terms of γmax

EE .

power consumption of the system, thus leads to a poor γ∗EE .
In addition, if Pc remains constant, γ∗EE decreases as the num-
ber of users increases. This is because the interference within
the same PSOAM MGs will be enhanced with the increasing
users number. Therefore, higher transmit power is required
to meet the minimum user rate and the hardware circuit
consumption when the number of users is large. Hence, this
results in a poor γ∗EE when the users number raises. Further-
more, to show the EE gain achieved by the proposed PSOAM
MGs based MIMO-NOMA system, we compare our proposed
algorithm with the SE maximization for PSOAM MGs based
MIMO-NOMA and the EE maximization for PSOAM MGs
based OMA. As shown in Fig. 7, EE achieved by the proposed
PSOAM MGs based MIMO-NOMA system outperform the
PSOAM MGs based OMA scheme regardless of the number of
users. This is because NOMA can enhance the EE by allowing
simultaneously serving multiple users with the same physical
resource. The results also show that NOMA combined with

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on April 22,2023 at 02:10:17 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: EE OPTIMIZATION FOR PSOAM MODE-GROUPS BASED MIMO-NOMA SYSTEMS 5689

Fig. 6. The performance of the proposed algorithm with different number
of users and circuit power.

Fig. 7. Comparison of the optimal EE for different number of users in the
network.

PSOAM can effectively improve the EE performance. Besides,
the PSOAM MGs based MIMO-NOMA system achieves
higher EE compared with the SE maximization scheme for
PSOAM MGs based MIMO-NOMA, which demonstrates the
effectiveness of our proposed resource allocation algorithm.
Particularly, the superiority is more obvious as the number of
users increase. This is because the interference increases with
the growth of the number of users and the increasing sum rate
of the system cannot offset the consumption of the transmit
power, leading to a decrease in EE. In addition, the simulation
results for the proposed resource allocation scheme with DBN
are in accordance with the results obtained by the dual layer
resource allocation algorithm, which prove the validity of the
proposed DBN-based framework.

Next, we aim to study the EE performance under the
constraints of transmit power and minimum required data
rate. We first show the optimal EE γ∗EE of the proposed
bisection-based resource allocation algorithm with different

Fig. 8. The performance of the proposed algorithms with different minimum
rate requirement constraints.

transmit power Pmax and minimum required data rate Rreq .
To prove the effectiveness of our proposed method, we apply
the algorithms in the PSOAM MGs based MIMO-NOMA
system and the traditional multi-user MIMO-NOMA sys-
tem [38] for comparison. As can be seen in Fig. 8, the γ∗EE
obtained by all the algorithms are monotonically decreasing
with the increase of Rreq . For the proposed dual layer resource
allocation algorithm, a significant drop occurs in our proposed
system when the minimum data rate of users is larger than
4 bit/s/Hz. This is owing to the fact that the limitation of trans-
mit power cannot satisfy the QoS requirement of each user.
Similarly, the EE of the conventional MIMO system decreases
slowly in the lower rate region, i.e., 0.5≤ Rreq <2.5 bit/s/Hz,
and then decreases sharply when Rreq > 2.5 bit/s/Hz. This is
because a lower rate constraint needs smaller transmit power
and thus the transmit power is allocated to achieve the γ∗EE .
Inversely, more transmit power ought to be allocated to satisfy
the minimum user rate when Rreq is high, which leads to
the rapidly decreasing curve. Compared with the conventional
multi-user MIMO-NOMA system, our proposed solution is
capable of achieving a significant performance gain in terms of
EE owing to the degree of freedom provided by PSOAM MGs
and MIMO-NOMA techniques, which is a splendid solution
for the improvement of EE.

Finally, we investigate the γ∗EE of the proposed solution
with various transmit power Pmax as well as different users
number. As can be seen in Fig. 9, the γ∗EE obtained by the
two approaches first increase and then become constant at high
transmit power region since the transmitter clips the transmit
power once the maximum EE is achieved. Specifically, the
γ∗EE increases dramatically with a lower Pmax, and then
achieves an asymptotic value when the balance between the
available rates and the energy consumption is obtained. This
is because in the high Pmax region, a portion of the maximum
transmit power is used to remain the optimal EE instead of
exploiting the full Pmax region to maximize the total rate,
hence the total rates will not further increase with Pmax.
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Fig. 9. The performance of the proposed algorithms with different entire
transmit power constraints.

Additionally, higher Pmax is required to achieve the stable
γ∗EE when the users number increases in the system. This is
because if the users number becomes larger, the total harvested
power will increase and hence lead to a poor EE performance.
In addition, it can be seen that our presented PSOAM MGs
based multi-user MIMO-NOMA system achieves much higher
EE than the conventional multi-user MIMO-NOMA system
for all feasible Pmax values. This is because the number of
sub-channels in our proposed system is larger than that of
the conventional MIMO-NOMA system due to mode division
multiplexing using PSOAM MGs. Thus, it is more efficient
to use the structure PSOAM MGs beams to achieve higher
data rate or EE compared with the conventional multi-user
MIMO-NOMA system.

VI. CONCLUSION

In this paper, we explore the EE optimization problem
for a PSOAM MGs based multi-user MIMO-NOMA system.
We aim to maximize the EE while meeting the constraints
of total transmit power and minimum user rate. The corre-
sponding problem of maximizing EE is NP-hard and cannot
be tackled directly. To solve this problem, a dual layer resource
allocation algorithm is developed. Particularly, we achieve the
optimal EE in the outer layer via the bisection-based solution
and achieve the optimal resource allocation in the inner layer
through the resource distribution iterative algorithm. We also
investigate another alternative algorithm to achieve the goal of
EE maximization with the help of deep learning. Numerical
results validate the superiority of the proposed PSOAM MGs
based MIMO-NOMA system in EE compared with the con-
ventional multi-user MIMO-NOMA system. Future works will
investigate the performance of PSOAM MGs for the channel
with partial channel state information (CSI). Besides, the EE
and SE trade-off problem for the PSOAM MGs based multi-
user MIMO-NOMA system is also a significant task in the
future.

APPENDIX A
PROOF OF PROPOSITION 1

We can make an assumption that the optimal transmit
resource allocation for (19) is P ∗. For all feasible transmit
resource allocation P ∈ {C1, C2, C3}, we can obtain the
formulas

Rtotal(P ) − γ∗EEPCtotal(P ) ≤ 0, (51)

Rtotal(P ∗) − γ∗EEPCtotal(P
∗) = 0. (52)

Equation (51) and (52) can be transformed as Rtotal(P )
PCtotal(P ) ≤

γ∗EE and Rtotal(P
∗)

PCtotal(P ∗) = γ∗EE , respectively. Therefore, P ∗ is
the optimal solution for (15) as well as (19).

Now, we start to prove the necessity of Proposition
1. According to (15), we can obtain Rtotal(P )

PCtotal(P ) ≤ γ∗EE
and Rtotal(P

∗)
PCtotal(P ∗) = γ∗EE for all feasible solution P ∈

{C1, C2, C3} which can be transformed into

Rtotal(P ) − γ∗EEPCtotal(P ) ≤ 0, (53)

Rtotal(P ∗) − γ∗EEPCtotal(P
∗) = 0. (54)

P ∗ is the optimal solution for (19) as well.

APPENDIX B
PROOF OF PROPOSITION 2

We assume that there are two values of EE denoted as γaEE
and γbEE . Let γaEE > γbEE . The optimal transmit resource
allocation corresponding to γaEE and γbEE is P a and P b.
We have

Υ(γaEE) = max
P

Rtotal(P ) − γaEEPCtotal(P )

= Rtotal(P a) − γaEEPCtotal(P
a)

< Rtotal(P a) − γbEEPCtotal(P
a)

≤ Rtotal(P b) − γbEEPCtotal(P
b)

= Υ(γbEE). (55)

Hence, we have proved the strictly monotonically decreasing
character of (21) in γEE .
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